Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
<u>So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment. </u>
So, option B is the answer
the missing force is spring force.
The object is hanging from the spring and the spring is stretched by some distance from its equilibrium position. due to this stretch in the spring , a spring force starts acting on the object trying to regain its equilibrium position.
the spring force is given as
F = kx
where F = spring force ,k = spring constant , x = stretch in the spring.
the spring force balances the weight of the object in down direction and hence keeps the block from falling down.
The colour of the star and the brightness.
The sun. lol. It is closer to Earth, therefore bigger to us, and not just a small point of light.