Answer:
<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg
k = 0.4
F = 200 N
<u>To </u><u>find </u><u>-</u><u> </u> acceleration
<u>Solution </u><u>-</u><u> </u>
F= kMA
200 = 0.4 * 20 * acceleration
200 = 8 * a
a = 8/200
a = 0.04 m s²
<h3>a = 0.04 m s²</h3>
The acceleration of the electron is larger than the acceleration of the proton.
The reason for this is that the mass of the electron is smaller (about 1000 times smaller) than the mass of the proton. The two particles have same charge (e), so they experience the same force under the same electric field E:
However, according to Newton's second law, the force is the product between the mass particle, m, and its acceleration, a:
which can be rewritten as

we said that the force exerted on the two particles, F, is the same, while the mass of the electron is smaller: therefore, from the last formula we see that the acceleration of the electron will be larger than that of the proton.
Ideal gas law:
PV = nRT
P = pressure, V = volume, n = # of moles, R = gas constant, T = temperature
Equipartition theorem:
Each degree of freedom that a molecule has adds 0.5kT to its total internal energy where k = Boltzmann's constant and T = temperature
2nd law of thermodynamics:
A set of governing principles that restrict the direction of net heat flow (always hot to cold, heat engines are never 100% efficient, entropy always tends to increase, etc)
Clearly the answer is Choice A
I dont really know but i think the first one is true super sorry