Inverse square law:

where

is the intensity at distance 1

is the intensity at distance 2

is distance 1

is distance 2
The inverse squared law state that intensity decreases in inverse proportion to the distance squared. So if light obeyed that rule, it will decreases its intensity as the square of the distance increases.
We can conclude that the correct answer is:
true.
Answer:
Momentum is define as the product of the mass and velocity of a body. It is measured in Kgm/s.
Explanation:
Momentum is the product of mass and velocity of an object. When an object or a body of mass 'm' is moving with velocity 'v', then its momentum can be determined as;
momentum (P) = mass × velocity
i.e P = m × v
= mv
It is measured in Kgm/s.
The change in momentum of a body is referred to as its impulse (Ft).
ΔP = m(v - u) = Ft
Where: P is the momentum of the object, m is its mass, v is its final velocity, u is the initial velocity, F is the force and t is the time in which the force acts.
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N
Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle
A satellite....etc
The Answer is : 7400 m/s
What is the .....etc
The Answer is : 2.60 m/s
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.