<h2>
Answer: 13.61 N/m</h2>
Hooke's law establishes that the elongation of a spring is directly proportional to the modulus of the force
applied to it, <u>as long as the spring is not permanently deformed</u>:
(1)
Where:
is the elastic constant of the spring. The higher its value, the more work it will cost to stretch the spring.
is the length of the spring without applying force.
is the length of the spring with the force applied.
According to this, we have a spring where only the force due gravity is applied.
In other words, the force applied is the weigth
of the block:
(2)
Where
is the mass of the block and
is the gravity acceleration.
(3)
(4)
Knowing the force applied
and
and
, we can substitute the values in equation (1) and find
:
(5)
(6)
<u>Finally:</u>
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Answer:
Geometrical optics, or ray optics, describes the propagation of light in terms of "rays" which travel in straight lines, and whose paths are governed by the laws of reflection and refraction at interfaces between different media.
A complex machine is a machine made up of two or more simple machines that make your work easier to do. There are six simple machines from which all complex machines are made. They include: The lever. The inclined plane