Answer:
4.26 %
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50 × 10
⁻⁴.</em>
<em />
Step 1: Given data
Initial concentration of the acid (Ca): 0.249 M
Acid dissociation constant (Ka): 4.50 × 10
⁻⁴
Step 2: Write the ionization reaction for nitrous acid
HNO₂(aq) ⇒ H⁺(aq) + NO₂⁻(aq)
Step 3: Calculate the concentration of nitrite in the equilibrium ([A⁻])
We will use the following expression.
![[A^{-} ] = \sqrt{Ca \times Ka } = \sqrt{0.249 \times 4.50 \times 10^{-4} } = 0.0106 M](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%20%5D%20%3D%20%5Csqrt%7BCa%20%5Ctimes%20Ka%20%7D%20%3D%20%5Csqrt%7B0.249%20%5Ctimes%204.50%20%5Ctimes%2010%5E%7B-4%7D%20%20%7D%20%3D%200.0106%20M)
Step 4: Calculate the percent ionization of nitrous acid
We will use the following expression.
![\alpha = \frac{[A^{-} ]}{[HA]} \times 100\% = \frac{0.0106M}{0.249} \times 100\% = 4.26\%](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D%20%5Ctimes%20100%5C%25%20%3D%20%5Cfrac%7B0.0106M%7D%7B0.249%7D%20%5Ctimes%20100%5C%25%20%3D%204.26%5C%25)
We need to see your problem/question you’re talking about to answer it
Answer:
Aluminum is ideal for aircraft manufacture because it's lightweight and strong. Aluminum is roughly a third the weight of steel, allowing an aircraft to carry more weight and or become more fuel efficient. Furthermore, aluminum's high resistance to corrosion ensures the safety of the aircraft and its passengers.
Explanation:
Answer:
Value of
for the given redox reaction is 
Explanation:
Redox reaction with states of species:

Reaction quotient for this redox reaction:
![Q_{p}=\frac{[Cr^{3+}]^{2}.P_{Cl_{2}}^{3}}{[H^{+}]^{14}.[Cr_{2}O_{7}^{2-}].[Cl^{-}]^{6}}](https://tex.z-dn.net/?f=Q_%7Bp%7D%3D%5Cfrac%7B%5BCr%5E%7B3%2B%7D%5D%5E%7B2%7D.P_%7BCl_%7B2%7D%7D%5E%7B3%7D%7D%7B%5BH%5E%7B%2B%7D%5D%5E%7B14%7D.%5BCr_%7B2%7DO_%7B7%7D%5E%7B2-%7D%5D.%5BCl%5E%7B-%7D%5D%5E%7B6%7D%7D)
Species inside third braket represent concentration in molarity, P represent pressure in atm and concentration of
is taken as 1 due to the fact that
is a pure liquid.
![pH=-log[H^{+}]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D)
So, ![[H^{+}]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D)
Plug in all the given values in the equation of
:

Explanation:
Their force of attraction is strongest in the middle of the magnet.