My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)
The height of the tennis ball,relative to the ground is H=h max+h-->h max-the maximum height that the tennis ball reaches relative to the roof of the building; h-the height of the building;h max =v0^2/2g=24,2m(g=10m/s^2).H=gt^2/2=>24,2+h=gt^2/2=>h=gt^2/2-24,2=180,6m
When you are on a huge water slide, the force present as you slide is the gravitational force. It is because the gravity enables you to slide down the water slide. The net force is the overall forces of the object, so as you slide the water slide, you may experience the net force once you slide down with the gravity and water sliding you down.
For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>
La D mijo es blanco por que al pasar con rapides el color se torna blanco