The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
When a star is moving away from earth it appears blue
Answer:
Explanation:
Given
Free fall acceleration on mars 
Time Period of pendulum on earth 
Time period of Pendulum is given by

for earth



(b)For same time period on mars length is given by



By the admiring tone that the writer has for the gift that she/he received, it is clear that there's a lot of imagery. The writer also described the rose as "perfect", "scented dew still wet", and "pure", which further supports the idea that he/she is describing the gift.
The correct answer is
<span>c) very small and very large
Let's see this with a few examples:
1) if we have a very small number, such as
</span>

<span>we see that we can write it easily by using the scientific notation:
</span>

<span>2) Similarly, if we have a very large number:
</span>

<span>we see that we can write it easily by using again the scientific notation:
</span>

<span>
</span>