<span>if we assume the origin is at the dropping point and the object is merely dropped and not thrown up or down then y0 = 0 and v0 = 0. The equation reduces to </span>
<span>y = 0 + 0t + ½gt² </span>
<span>y = ½gt² </span>
<span>t = √(2y/g) </span>
<span>in the ft - lb - s system </span>
<span>y = -100 ft </span>
<span>g = -32.2 ft / s² </span>
<span>t = √(2y/g) </span>
<span>t = √(2(-100) / (-32.2)) </span>
<span>t = 2.5 s</span>
Answer:force equals to rate of change of momentum
Explanation:
F=force
t=time
m=mass
v=final velocity
u=initial velocity
(mv-mu)/t=rate of change of momentum
Force=rate of change of momentum
F=(mv-mu)/t
The gravitational force is inversely proportional to the
square of the distance between their centers. So the
force is greatest when the distance is zero.
W-APE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative APE. There must be a minus sign in front of APE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.
( The capital A’s in the words are supposed to be triangles ! I also hoped this helped ! Please mark me as brainliest !! )
You can test if it’s true by holding a pencil in mid air over a table and the table is supposed to be the unbalanced forced that stopped the pencil from moving at the constant velocity it was going by.