<h3><u><em>
Answer:</em></u></h3><h3><u><em>
Ok, here we go...</em></u></h3><h3><u><em>
Explanation:</em></u></h3><h3><u><em>
Astronauts perform many tasks as they orbit Earth. The space station is designed to be a permanent orbiting research facility. Its major purpose is to perform world-class science and research that only a microgravity environment can provide. The station crew spends their day working on science experiments that require their input, as well as monitoring those that are controlled from the ground. They also take part in medical experiments to determine how well their bodies are adjusting to living in microgravity for long periods of time.</em></u></h3><h3><u><em>
</em></u></h3><h3><u><em>
Working on the space station also means ensuring the maintenance and health of the orbiting platform. Crew members are constantly checking support systems and cleaning filters, updating computer equipment: doing many of the things homeowners must do to ensure their largest investment stays in good shape. Similarly, the Mission Control Center constantly monitors the space station and sends messages each day through voice or email with new instructions or plans to assist the crew members in their daily routines.</em></u></h3><h3><u><em>
</em></u></h3>
<u><em></em></u>
from the NASA website, COPYRIGHT Jun 8, 2015
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
The results of the experiments should be similar.
Technically, I can't answer the question, because you won't
let me see the picture that goes along with it and is a part of it.
But I'm familiar with the set-up, have dealt with the question before,
and I can answer it from my previous experience and general knowledge.
If there is 500g of mass inside the jar when you lower it over
the candle, then there will be 500g of mass at any time after that,
forever, or until you pick up the jar and take some mass out or put
some more in. It doesn't matter how long you wait. It also doesn't
matter whether or not the candle is burning, whether or not the sun
is shining on the jar, or whether somebody comes along and spray-paints
the outside of the jar with black paint. Matter is not created or destroyed.
Whatever mass was inside when the jar got closed stays in there.
Answer:
The neutron can be found in the nucleus of the atom with the proton.