The percent error associated with Jason’s measurement is 0.596%.
HOW TO CALCULATE PERCENTAGE ERROR:
- The percentage error of a measurement can be calculated by following the following process:
- Find the difference between the true value and the measured value of a quantity.
- Then, divide by the true value and then multiplied by 100
- The true value of the density of iron is 7.874 g/mL
- Jason observed value is 7.921 g/mL
Difference = 7.921 g/mL - 7.874 g/mL
Difference = 0.047 g/mL
Percentage error = 0.047/7.874 × 100
Percentage error = 0.596%.
Therefore, the percent error associated with Jason’s measurement is 0.596%.
Learn more: brainly.com/question/18074661?referrer=searchResults
The statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
<h3>What are intermolecular forces?</h3>
The term intermolecular forces are the force that hold matter together in a particular state such as solid liquid or gas. The more the electrons present, the greater the polarizability and the greater dispersion forces at work.
Thus, the statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
Learn more about intermolecular forces:brainly.com/question/9007693
#SPJ1
Answer:
Mitosis
Explanation:
A cell that contains the same DNA as its parent cell is a product of mitosis.
- Mitosis is a cell division process that takes place in somatic cells.
- In meiosis a single cell divides to produce two daughter cells each having the same DNA as the parent
- Mitosis ensures that the same DNA is found between the parent
- Mitosis is used for repairing and production of new cells.
Answer:
k = 0.0306 min-1
Explanation:
The table is given as;
Time, Concentration
0 1.48
5 1.27
10 0.98
15 0.84
The integrated rate law for a first order reaction is given as;
ln [A] = -kt + ln [Ao]
where;
[A] = Final Concentration
[Ao] = Initial Concentration
k = rate constant
t = time
In the table, taking the first two sets of values;
t = 5
k = ?
[Ao] = 1.48
[A] = 1.27
Inserting into the equation;
ln(1.27) = - k (5) + ln(1.48)
ln(1.27) - ln(1.48) = -5k
-0.1530 = -5k
k = -0.1530 / -5
k = 0.0306 min-1
Answer:
answer is c
Explanation: cause there breaking it