Answer:
4.78 m
Step-by-step explanation:
From cm to m, you would need to divide 100 to get your conversion answer which is 4.78 m.
Answer:
7/10
Step-by-step explanation:
67/10-60/10=7/10
Assuming your system of equations is

The answer is C. Infinitely many solutions. If my assumption is incorrect, then the answer will be likely different.
The reason why it's "infinitely many solutions" is because the first equation is the same as the second equation. The only difference is that everything was multiplied by -1. You could say that both sides were multiplied by -1.
Both equations given graph out the same line. They overlap perfectly yielding infinitely many solution points on the line.
The force in the rod when the temperature is 150 °F is 718.72 pounds-force.
<h3>How to determine the resulting the resulting force due to mechanical and thermal deformation</h3>
Let suppose that rod experiments a <em>quasi-static</em> deformation and that both springs have a <em>linear</em> behavior, that is, force (
), in pounds-force, is directly proportional to deformation. Then, the elongation of the rod due to <em>temperature</em> increase creates a <em>spring</em> deformation additional to that associated with <em>mechanical</em> contact.
Given simmetry considerations, we derive an expression for the <em>spring</em> force (
), in pounds-force, as a sum of mechanical and thermal effects by principle of superposition:
(1)
Where:
- Spring constant, in pounds-force per inch.
- Spring deformation, in inches.
- Rod elongation, in inches.
The <em>rod</em> elongation is described by the following <em>thermal</em> dilatation formula:
(2)
Where:
- Coefficient of linear expansion, in
.
- Initial length of the rod, in inches.
- Initial temperature, in degrees Fahrenheit.
- Final temperature, in degrees Fahrenheit.
If we know
,
,
,
,
and
, then the force in the rod at final temperature is:
![F = \left(1000\,\frac{lb}{in} \right)\cdot \left[0.7\,in + 0.5\cdot\left(6.5\times 10^{-6}\,\frac{1}{^{\circ}F} \right)\cdot (48\,in)\cdot (150\,^{\circ}F-30\,^{\circ}F)\right]](https://tex.z-dn.net/?f=F%20%3D%20%5Cleft%281000%5C%2C%5Cfrac%7Blb%7D%7Bin%7D%20%5Cright%29%5Ccdot%20%5Cleft%5B0.7%5C%2Cin%20%2B%200.5%5Ccdot%5Cleft%286.5%5Ctimes%2010%5E%7B-6%7D%5C%2C%5Cfrac%7B1%7D%7B%5E%7B%5Ccirc%7DF%7D%20%5Cright%29%5Ccdot%20%2848%5C%2Cin%29%5Ccdot%20%28150%5C%2C%5E%7B%5Ccirc%7DF-30%5C%2C%5E%7B%5Ccirc%7DF%29%5Cright%5D)

The force in the rod when the temperature is 150 °F is 718.72 pounds-force. 
To learn more on deformations, we kindly invite to check this verified question: brainly.com/question/13774755
Answer:
It's 15
Step-by-step explanation:
17(1)=17
17-2=15