Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
Answer:
the changes in waves
Explanation:
the moon has its own gravitational pull thus making waves and the rising tides
<u>We are given:</u>
Mass of the rocket = 10 kg
Weight of the Rocket = 100 N
Upward thrust applied by the rocket = 400 N
<u>Net upward force on the rocket:</u>
We are given that gravity pulls the rocket with a force of 100 N
Also, the rocket applied a force of 400N against gravity
Net upward force = Upward thrust - Force applied by gravity
Net upward force = 400 - 100
Net upward force = 300 N
<u>Upward Acceleration of the Rocket:</u>
From newton's second law:
F = ma
<em>replacing the variables</em>
300 = 10 * a
a = 30 m/s²
Answer:
no change in speed, therefore the body cannot be accelerated. a=0
Explanation:
When a person is accelerating his speed must change, if the speed is in the same direction as the acceleration the speed increases and if the acceleration is in the opposite direction to the speed it decreases.
In this case there is no change in speed, therefore the body cannot be accelerated.