Answer:

Solution:
As per the question:
Mass of first object, m = 120 kg
Mass of second object, m' = 420 kg
Mass of the third object, M = 69.0 kg
Distance between the m and m', d = 0.380 m
Now,
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m:
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m':
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m and m':


1000000
Explanation
No equation for the following question was given
To solve this problem we will apply the linear motion kinematic equations. To determine the position in which the braking starts we will start from the definition of distance as a function of speed and time, that is

Here,
= Initial position
v = Velocity
t = time
Replacing we have that


Now the acceleration is given by the function,

Here,
= Final velocity
= Initial velocity
a = Acceleration
x = Displacement
Replacing we have that


Therefore the acceleration necessary to bring the train to rest is 
Answer:Our home planet Earth is a rocky, terrestrial planet. It has a solid and active surface with mountains, valleys, canyons, plains and so much more. Earth is special because it is an ocean planet. Water covers 70% of Earth's surface.