Explanation:
It is given that,
Mass of the truck, m = 2000 kg
Initial velocity of the truck, u = 34 km/h = 9.44 m/s
Final velocity of the truck, v = 58 km/h = 16.11 m/s
(a) Change in truck's kinetic energy, 



(b) Change in momentum of the truck, 


Hence, this is the required solution.
The spring should have a greater displacement .
Greater spring constant = the more difficult it is to stretch a spring , due to stiffness.
Answer:
L_new =L+x^2 = L_new = 0.54_m.
Explanation:
Given data:
Force in the first case,
F_1 = 5N
Force in the second case,
F_2 = 20 N
Natural length of spring,
L= 0.5
Extension in the first case,
x_1 = 0.01m
Let the force constant of the spring be k.
Thus,
F_1=kx_1
5 = k × 0.01
⇒ k = 500 N/m.
The extension in the spring in the second case can be given as,
F_2=kx_2
20 = 500x_2
⇒ x_2 = 0.04 m.
Thus, the effective length of the spring would be,
L_new =L+x^2
L_new = 0.5+0.04
L_new = 0.54_m.
Answer:
Force, F = 16814.95 N
Explanation:
It is given that,
Mass of space station, m = 2010 kg
Altitude, 
Mass of earth, 
Mean radius of earth, 
Magnitude of force is given by :

R = r + d


F = 16814.95 N
So, the force between the space station and the Earth is 16814.95 N. Hence, this is the required solution.