Answer:
please I think the answer is A.
please show appreciation if it helps
and sorry if it doesn't help.
Answer:
A
Explanation:
To answer this, we need to use Gay-Lussac's law, which states that:
, where P is pressure and T is temperature
The initial pressure we're given is 4.5 atm (so P1 = 4.5) and the temperature is 45.0°C; however, we need to change Celsius to Kelvins, so add 273 to 45.0: 45.0 + 273 = 318 K (so T1 = 318).
The final pressure is what we want to find, but we do know the final temperature is 3.1°C. Converting this to Kelvins, we get: 3.1 + 273 = 276.1 K, which means T2 = 276.1.
Plug these values in:

Multiply both sides by 276.1:
≈ 3.9 atm
The answer is thus A.
Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
Answer:
A:temperature
Explanation:
The temperature cannot be determined by looking at the spectra of the star due to lack of the equipment for its measurement. <em>On the other-hand, the remaining statements like the distance from earth, movement towards or away from earth can be determined.</em>