Answer:
Explanation:
Firstly, it should be noted that atomic number (number of protons) determines element. And the element with the atomic number 10 (10 protons) is Neon. Hence, Neon-10 (₁₀Ne) is the answer.
Note that sodium has an atomic number of 11. Also, number of protons is usually equal to the number of electrons in neutral atoms, this is because the total number of positive particles (protons) must be equal to the total number of negative particles (electrons) to give a neutral atom.
Refer to the diagram shown below.
The piston supports the same load W at both temperatures.
The ideal gas law is

where
p = pressure
V = volume
n = moles
T = temperature
R = gas constant
State 1:
T₁ = 20 C = 20+273 = 293 K
d₁ = 25 cm piston diameter
State 2:
T₂ = 150 C = 423 K
d₂ = piston diameter
Because V, n, and R remain the same between the two temperatures, therefore

If the supported load is W kg, then

Similarly,


Because p₁/p₂ = T₁/T₂, therefore

The minimum piston diameter at 150 C is 20.8 cm.
Answer: 20.8 cm diameter
About 255.3 grams is the answer I believe. I just had a school work packet and had that question on it, and that is the answer that I had put on it I believe.
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
![K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s = s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%20%3D%20s%5Ctimes%20s%20%3D%20%20s%5E%7B2%7D%20%3D%203.0%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D%20%5Csqrt%7B3.0%5Ctimes%2010%5E%7B-8%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%201.7%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20mol%2FL%7D)
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
![K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx 0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%20s%20%5Capprox%20%200.02s%20%3D%201.1%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B0.02%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-9%7D%20%5Ctext%7B%20mol%2FL%7D)
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
![\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%7D%20%7Bc_%7Bi%7Dz_%7Bi%7D%5E%7B2%7D%7D%5C%5C%5C%5C%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%7D%5Ccdot%20%282%2B%29%5E%7B2%7D%20%2B%20%5Ctext%7B%5BNO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%5Ctimes%28-1%29%5E%7B2%7D%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B0.02%7D%5Ctimes%204%20%2B%20%5Ctext%7B0.04%7D%5Ctimes1%29%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%280.08%20%2B%200.04%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes0.12%20%3D%200.06)
(ii) Silver iodate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
![K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5Cgamma_%7BAg%5E%7B%2B%7D%7D%24%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%24%5Cgamma_%7BIO_%7B3%7D%5E%7B-%7D%7D%24%7D%20%3D%20s%5Ctimes0.75%5Ctimes%20s%20%5Ctimes%200.75%20%3D0.56s%5E%7B2%7D%3D%203.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B3.0%20%5Ctimes%2010%5E%7B-8%7D%7D%7B0.56%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cs%20%3D2.3%20%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20mol%2FL%7D)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
![K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx 0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%24%5Cgamma_%7B%20Ba%5E%7B2%2B%7D%7D%24%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%24%5Cgamma_%7B%20SO_%7B4%7D%5E%7B2-%7D%7D%24%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%200.32%5Ctimes%20s%5Ctimes%200.32%20%5Capprox%20%200.02%5Ctimes0.10s%5C%5C2.0%5Ctimes%2010%5E%7B-3%7Ds%20%3D%201.1%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B2.0%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctext%7B%20mol%2FL%7D)