Answer:

Explanation:
Given:
height above the horizontal form where the ball is hit, 
angle of projectile above the horizontal, 
initial speed of the projectile, 
<u>Firstly we find the </u><u>vertical component of the initial velocity</u><u>:</u>



During the course of ascend in height of the ball when it reaches the maximum height then its vertical component of the velocity becomes zero.
So final vertical velocity during the course of ascend:
Using eq. of motion:
(-ve sign means that the direction of velocity is opposite to the direction of acceleration)

(from the height where it is thrown)
<u>Now we find the time taken to ascend to this height:</u>



<u>Time taken to descent the total height:</u>
- we've total height,


- during the course of descend its initial vertical velocity is zero because it is at the top height, so



<u>Now the total time taken by the ball to hit the ground:</u>



One is the best choice for an answer.
Answer:
Explanation:
A )
The smallest tidal ranges are less than 1 m (3 feet). The highest tides, called spring tides, are formed when the earth, sun and moon are lined up in a row. This happens every two weeks during a new moon or full moon. Smaller tides, called neap tides, are formed when the earth, sun and moon form a right angle.
C ) The most extreme tidal range occurs during spring tides, when the gravitational forces of both the Moon and Sun are aligned (syzygy), reinforcing each other in the same direction (new moon) or in opposite directions (full moon).