Answer:
Looks like you have:
a = -.324 cos 2.5 t
In this case ω^2 A = .324
ω = 2.5
f = ω / (2 * pi) = 2.5 / 6.28 = .40 / sec
The centripetal force is:
F = mv² / R
Where:
m: mass of the object
v: object speed
R: radius of the curve.
We have to:
m = 2000kg
v = 25 m / s
R = 80 meters.
Then the centripetal force acting on the vehicle is:
F = (2000kg * (25m / s) ²) / 80m
F = 15625 N
In my opinion it does. The more water the pot holds, the longer you need to wait for it to freeze. Since there is more water, some parts may not be completely frozen. An experiment you can try is to get an ice cube container and a pot. fill both of them and put them in the freezer for the same amount of time. When you take it out, the ice cubes should be frozen leaving the pot with cold water.
What is an example of how you can use scientific inquiry to solve a real life problem.
Answer:
1.0×10³ N
Explanation:
μs is the static coefficient of friction. That's the friction that acts on a stationary (non-moving) object when being pushed or pulled.
μk is the kinetic coefficient of friction. That's the friction that acts on a moving object.
To budge the pig (while it's still stationary), we need to overcome the static friction.
F = N μs
For a non-moving object on level ground, the normal force N equals the weight.
F = mg μs
Given m = 130 kg and μs = 0.80:
F = (130 kg) (9.8 m/s²) (0.80)
F = 1019.2 N
Rounded to two significant figures, the force needed to budge the pig is 1.0×10³ N.