Answer:
B
Explanation:
As you move down the periodic table in the carbon family, the atomic radius and ionic radius increase while electronegativity and ionization energy decrease. Atom size increases moving down the group because an additional electron shell is added.
Answer:
The element argon is in column 8A and is a noble gas. Nobles gases are completely stable because their outershell is filled with all eight electrons. Argon has eight valence electrons.
Reaction Rate is the rate at which a substance undergoes a chemical change.
Answer:
igneous rock CAN become sedimentary rock through a process called ROCK CYCLE.
Explanation:
Rocks can be defined as solid structures of minerals that are formed naturally over a period of time. They are grouped into three main types which includes the following:
- igneous rock
- sedimentary rocks and
- metamorphic rocks.
Rocks are capable of transforming from one type to another through a process known as rock cycle. There are two forces that brings about this process which includes:
- The internal force : this is the Earth’s internal heat engine, which moves material around in the core and the mantle and leads to slow but significant changes within the crust.
- The external force: this is the the hydrological cycle, which is the movement of water, ice, and air at the surface, and is powered by the sun.
Molten magma cools to form either extrusive igneous rock or intrusive igneous rock. With time they undergo weathering, eroded, transported, and then deposited as sediments which are being compressed and cemented into SEDIMENTARY ROCKS. Again through the above mentioned forces, different kinds of rocks are either uplifted, to be re-eroded, or buried deeper within the crust where they are heated up, squeezed, and changed into METAMORPHIC ROCK.
Therefore the material in this sedimentary rock found in Rhombus planet used to be in igneous rock deep in Rhombus's interior due to continuous rock cycling on the planet. I hope this helps, thanks.
Answer:
The volume you need to transfer from the stock solution is 0.145 l
Explanation:
Since the number of moles of lactose in the volume of stock solution that you transfer will be the same as the number of moles of lactose in the final solution, you can use this expression:
number of moles in volume to transfer = number of moles in the final solution
Since number of moles = concentration * volume (if the concentration is expressed in molarity), then:
Ci * Vi = Cf * Vf
where:
Ci = concentration of the stock solution.
Vi = volume of the stock solution to be transferred.
Cf = concentration of the final solution
Vf = volume of the final solution
Then, replacing with the data:
518 mM * Vi = 16.7 mM * 4.5 l
Vi = 16.7 mM * 4.5 l / 518 mM
<u>Vi = 0.145 l or 145 ml</u>
Notice that any concentration unit can be used, as long as the units of the concentration of the stock and final solution are the same.