3K2CO3 + 2Fe(NO3)3 > 2K3(NO3)3 + Fe2(CO3)3
Atomic mass Ca = 40 a.m.u
1 mole Ca ----------- 40 g
2.5 mols Ca -------- ( mass Ca )
Mass Ca = 2.5 x 40 / 1
Mass Ca = 100 / 1
= 100 g of Ca
hope this helps!
Answer:
2.01 M
Explanation:
Step 1: Calculate the moles of acetic acid (HC₂H₃O₂)
The molar mass of acetic acid is 60.05 g/mol. We will use this data to calculate the moles corresponding to 36.2 g of acetic acid.

Step 2: Convert the volume of solution to liters
We will use the relation 1000 mL = 1 L. We assume that the volume of solution is that of water (300 mL)

Step 3: Calculate the molarity of the solution
The molarity is equal to the moles of solute (acetic acid) divided by the liters of solution

Answer:
Explanation:\
Elastic energy is energy stored in an object when there is a temporary strain on it – like in a coiled spring or a stretched elastic band.
The energy is stored in the bonds between atoms. The bonds absorb energy as they are put under stress and release the energy as they relax (when the object returns to its original shape).
Answer: 5.48
Explanation:
pH is the negative logarithm of hydrogen ion concentration in a solution.
Mathematically, pH = - log(H+)
where H+ represent the concentration of hydrogen ion
So, to get the pH of the solution with [H +] = 3.25×10-6 M:
Apply, pH = -log(H+)
pH = - log (3.25×10-6 M)
pH = - ( -5.48)
(Note that the minus signs will cancel out each other)
Therefore pH = 5.48
Now we know that the pH of the solution with hydrogen ion concentration of 3.25×10-6 M is 5.48 (i.e slightly acidic)
Thus, we can finally say 5.48 is the pH of the solution within a solution with pH = 4.50