Answer : The cell potential for this reaction is 0.50 V
Explanation :
The given cell reactions is:

The half-cell reactions are:
Oxidation half reaction (anode): 
Reduction half reaction (cathode): 
First we have to calculate the cell potential for this reaction.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BPb%5E%7B2%2B%7D%5D%7D)
where,
F = Faraday constant = 96500 C
R = gas constant = 8.314 J/mol.K
T = room temperature = 
n = number of electrons in oxidation-reduction reaction = 2
= standard electrode potential of the cell = +0.63 V
= cell potential for the reaction = ?
= 3.5 M
= 
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this reaction is 0.50 V
Answer:
It should be A the gravitational force on the moon is weaker than on Earth
Answer:
Explanation:
The wavelength is the distance between two adjacent wavefronts. ... If the wave crosses to the new medium at an angle (not 90 degrees), the change ... When light enters a more optically dense medium, it is refracted closer to the normal. the same as the critical angle, light will travel along the boundary of the 2 mediums.
CO2 and H2O react to form H2CO3 and two bonds are broken each in CO and H2O to form H2CO3.
<h3>What is chemical bonding?</h3>
Chemical bonding refers to the forces of attraction which hold atoms of the same or different elements together in order to form stable compounds or molecules .
Chemical bonding may be either ionic or covalent.
The greater the number of bonds in a compound, the more stable the compound.
During chemical reactions, bonds are broken and new binds are formed.
There are two bonds each in CO2 and H2O.
This, in the reaction between CO2 and H2O react to form H2CO3, , the number of bonds broken in H2O is two and in CO2 is two.
Learn more about chemical bonding at: brainly.com/question/819068