A phosphorus atom and a chlorine atom are likely to form a covalent bond because both elements are nonmetals.
Answer:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
Explanation:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
In this type of reaction, one substance is replacing another:
A + BC → AC + B
In a single displacement reaction, atoms replace one another based on the activity series. Elements that are higher in the activity series. Also, if the element that is to replace the other in a compound is more reactive the reaction will occur. If it is less reactive, there will be no reation.
In the first equation, fluorine is more reactive than bromine. Therefore, bromine cannot replace bromine.
In the second equation, the displacement is between hydrogen and aluminium. Hydrogen is lower in the activity series, this implies that aluminum will replace it.
The answer is: when the aim is to show electron distributions in shells
An orbital notation is more appropriate if you want to show how the electrons of an atom are distributed in each subshell. This is because there are some atoms that have special electronic configurations that aren't obvious in just written configurations.
Liquid? maybe, its really inbetween if you get what i mean
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>