1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
13

PHYSICS CIRCUIT QUESTION PLEASE HELP!! 20 Points!

Physics
1 answer:
dimulka [17.4K]3 years ago
7 0
This really calls for a blackboard and a hunk of chalk, but
I'm going to try and do without.

If you want to understand what's going on, then PLEASE
keep drawing visible as you go through this answer, either
on the paper or else on a separate screen.

The energy dissipated by the circuit is the energy delivered by
the battery.  We'd know what that is if we knew  I₁ .  Everything that
flows in this circuit has to go through  R₁ , so let's find  I₁  first.

-- R₃ and R₄ in series make 6Ω.
-- That 6Ω in parallel with R₂ makes 3Ω.
-- That 3Ω in series with R₁ makes 10Ω across the battery.
--  I₁ is  10volts/10Ω  =  1 Ampere.

-- R1:  1 ampere through 7Ω ... V₁ = I₁ · R₁ = 7 volts .

-- The battery is 10 volts. 
    7 of the 10 appear across R₁ .
   So the other 3 volts appear across all the business at the bottom.

-- R₂:  3 volts across it = V₂. 
           Current through it is  I₂ = V₂/R₂ = 3volts/6Ω = 1/2 Amp.

-- R3 + R4:  6Ω in the series combination
                     3 volts across it
                     Current through it is I = V₂/R = 3volts/6Ω = 1/2 Ampere

--  Remember that the current is the same at every point in
a series circuit.  I₃  and  I₄  must be the same 1/2 Ampere,
because there's no place in the branch where electrons can
be temporarily stored, no place for them to leak out, and no
supply of additional electrons.

-- R₃:  1/2 Ampere through it = I₃ .
           1/2 Ampere through 2Ω ... V₃ = I₃ · R₃ = 1 volt

-- R₄:  1/2 Ampere through it = I₄
           1/2 Ampere through 4Ω ... V₄ = I₄ · R₄ = 2 volts

Notice that  I₂  is 1/2 Amp, and (I₃ , I₄) is also 1/2 Amp.
So the sum of currents through the two horizontal branches is 1 Amp,
which exactly matches  I₁  coming down the side, just as it should.
That means that at the left side, at the point where R₁, R₂, and R₃ all
meet, the amount of current flowing into that point is the same as the
amount flowing out ... electrons are not piling up there.

Concerning energy, we could go through and calculate the energy
dissipated by each resistor and then addum up.  But why bother ?
The energy dissipated by the resistors has to come from the battery,
so we only need to calculate how much the battery is supplying, and
we'll have it.

The power supplied by the battery  = (voltage) · (current)

                                                         =  (10 volts) · (1 Amp) = 10 watts .

"Watt" means "joule per second".
The resistors are dissipating 10 joules per second,
and the joules are coming from the battery.

             (30 minutes) · (60 sec/minute)  =  1,800 seconds

             (10 joules/second) · (1,800 seconds)  =  18,000 joules  in 30 min

The power (joules per second) dissipated by each individual resistor is

                       P  =  V² / R
             or
                       P  =  I² · R ,

whichever one you prefer.  They're both true.

If you go through the 4 resistors, calculate each one, and addum up, you'll
come out with the same 10 watts / 18,000 joules total. 

They're not asking for that.  But if you did it and you actually got the same
numbers as the battery is supplying, that would be a really nice confirmation
that all of your voltages and currents are correct.
You might be interested in
The temperature and pressure at the surface of Mars during a Martian spring day were determined to be -50 °C and 900 Pa, respect
Sidana [21]

Answer:

T = 273 + (-50) = 273 – 50 = 223 K

R = 188.82 J / kg K for CO2

Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / m^{3}

T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa

Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg / m^{3}

4 0
4 years ago
Read 2 more answers
What is a risk assessment?
tiny-mole [99]

Answer:

c. judgment regarding a hazard

Explanation:

4 0
3 years ago
Which of the following statements accurately describes a pedigree chart?
Dmitry_Shevchenko [17]
The correct letter answer choice is A. We just finished up genetics in 8th grade science. You're welcome :)
8 0
3 years ago
Read 2 more answers
When using the magnification equation, a value greater than 1 as the solution for M indicates that the image is_____________.
Alexxandr [17]
Larger than the object.
6 0
4 years ago
Read 2 more answers
A 7.00-kg object accelerates from rest to a final velocity in 55 seconds. If the magnitude of the
Len [333]

Answer:

The final velocity of the object is 330 m/s.

Explanation:

To solve this problem, we first must find the acceleration of the object.  We can do this using Newton's Second Law, given by the following equation:

F = ma

If we plug in the values that we are given in the problem, we get:

42 = 7 (a)

To solve for a, we simply divide both sides of the equation by 7.

42/7 = 7a/7

a = 6 m/s^2

Next, we should write out all of the information we have and what we are looking for.

a = 6 m/s^2

v1 = 0 m/s

t  = 55 s

v2 = ?

We can use a kinematic equation to solve this problem.  We should use:

v2 = v1 + at

If we plug in the values listed above, we should get:

v2 = 0 + (6)(55)

Next, we should solve the problem by performing the multiplication on the right side of the equation.

v2 = 330 m/s

Therefore, the final velocity reached by the object is 330 m/s.

Hope this helps!

7 0
3 years ago
Other questions:
  • When work is done by a system and no heat is added, the temperature of the system?
    11·1 answer
  • You have a 1.8m long copper wire. You want to make an N-turn current loop that generates a 2.0mT magnetic field at the center wh
    7·1 answer
  • Kepler’s third law states that for all objects orbiting a given body, the cube of the semimajor axis (A) is proportional to the
    13·1 answer
  • 2. If you are sitting on the passenger side of a car driving down the
    7·1 answer
  • To all the physicians please help this is for my assignment
    10·1 answer
  • The equivalent resistance of two resistances in series 15.5 0hm and 1.2 ohm in parallel the higher resistance is​
    14·1 answer
  • What happens to the mass of an object when the
    11·1 answer
  • 1. An elephant has more inertia than a mouse.<br><br> Is this:<br> true<br> false
    15·2 answers
  • As a pelican flies through the air, it flaps its wings, thereby pushing down on the air below. What is the reaction force?
    11·2 answers
  • A block of mass m is on surface of negligible friction that is inclined at an angle of θ above the horizontal. The block is init
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!