This is an example of conduction
Position of B :
x = 4.66*cos 30 = 4.036
y = 3-4.66*sin 30 = 3-2.33 = 0.67
BC = √y^2+(x-1)^2 = √0.67^2+3.036^2 = 3.109
heading = arctan y/(x-1) = arctan 0.67/(3.036) = 12.44° south of west
hope this helps :)
Answer:
x = (mg-f)/k
Explanation:
there are three forces acting on cylinder in a tube, (1) force due to spring = -kx (2) force due to friction = f (3) force due to gravity.
we want to calculate an instant when all three forces acting on mass cancel and there is 0 net force and cylinder momentiraly comes to stop.
let's write it in mathematics.
kx+f-mg=0 (kx is positive because it is upwards and that is how we have setup our coordinate axis in this problem).
solving for x gives.
x = (mg-f)/k.
Answer:
a) v = √ 2gL abd b) θ = 45º
Explanation:
a) for this part we use the law of conservation of energy,
Highest starting point
Em₀ = U = mg h
Final point. Lower
Em₂ = ½ m v²
Em₀ = Em₂
m g h = ½ m v²
v = √2g h
v = √ 2gL
b) the definition of power is the relationship between work and time, but work is the product of force by displacement
P = W / t = F. d / t = F. v
If we use Newton's second law, with one axis of the tangential reference system to the trajectory and the other perpendicular, in the direction of the rope, the only force we have to break down is the weight
sin θ = Wt / W
Wt = W sin θ
This force is parallel to the movement and also to the speed, whereby the scalar product is reduced to the ordinary product
P = F v
The equation that describes the pendulum's motion is
θ = θ₀ cos (wt)
Let's replace
P = (W sin θ) θ₀ cos (wt)
P = W θ₀ sint θ cos (wt)
We use the equation of rotational kinematics
θ = wt
P = Wθ₀ sin θ cos θ
Let's use
sin 2θ = 2 sin θ cos θ
P = Wθ₀/2 sin 2θ
This expression is maximum when the sine has a value of one (sin 2θ = 1), which occurs for 90º,
2θ = 90
θ = 45º
Answer:Physics. Distance, the total distance an object travels dependent on its path through space. Optical path length, the product of the distance light travels and the refractive index of the medium it travels through. Mean free path, the average distance that a particle travels before scattering.
Explanation: