Based on the equation KE = 1/2(m)(v^2), Kinetic Energy can be measured based on velocity. If an object has a large velocity, it have a larger kinetic energy than if the velocity is small.
Hope this helps.
If this helped you, please vote me as brainliest!
Answer:
Balances and Scales
A balance compares an object with a known mass to the object in question. One example of a balance is the triple beam balance. The standard unit of measure for mass is based on the metric system and is typically denoted as kilograms or grams.
The total amount of energy stays the same, but throughout the ride, the kinetic energy and the potential energy change, still adding up to the same number. At the top of the ride it has potential energy, and as it goes down the potential energy decreases and the kinetic energy increases. When it’s at the bottom of the first drop it has maxed out its kinetic energy, and minimized its potential energy. Friction slows down the car, and pushes on the cart with a force that is equal and opposite to the force being exerted in the track. The reason the track keeps going is because though it exerts and equal and opposite force the momentum of the objects is different, allowing the car to continue moving, however friction will slow it down until eventually it comes to a stop.
Hey there,
Most mountains are formed mostly in Mount Vesuvius, Himalayas, and <span>Mount Kilimanjaro.
Hope this helps!</span>
It defines that if two thermodynamic systems are each in equilibrium with a third system, then they are in equilibrium with each other.