<h2>
Answer: 540 J</h2>
Explanation:
The Work done by a Force refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
In this case both (the force and the distance in the path) are parallel (this means they are in the same direction), so the work performed is the product of the force exerted to push the box by the distance traveled .
Hence:
(2)
Answer: a) 7.1 * 10^3 N; b) -880 N directed out of the curve.
Explanation: In order to solve this problem we have to use the Newton laws, then we have the following:
Pcos 15°-N=0
Psin15°-f= m*ac
from the first we obtain N, the normal force
N=750Kg*9.8* cos (15°)= 7.1 *10^3 N
Then to calculate the frictional force (f) we can use the second equation
f=P sin (15°) -m*ac where ac is the centripetal acceletarion which is equal to v^2/r
f= 750 *9.8 sin(15°)-750*(85*1000/3600)^2/150= -880 N
As we know that friction force on box is given by
here we know that
here we have
m = 12 kg
so now we have
now we will have
so it required minimum 49 N(approx) force to move the block
Answer: Single replacement
Explanation: A P E X
The force on a 64 k person decelerating on that rate would be :
F = ma
F = 64 kg x 30 x 9.8
= 18816 N
Hope this helps