1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laiz [17]
3 years ago
7

How are desert plants adapted to their climate?

Physics
1 answer:
Alchen [17]3 years ago
8 0
They are made for the climate but to answer your question they suck up water and slowly consume it until the next rainfall comes then they suck again
You might be interested in
Light from two lasers is incident on an opaque barrier with a single slit of width 4.0 x 10^-4 m. One laser emits light of wavel
Sergio [31]

Answer:

a) y = 2.4 x 10⁻³ m = 0.24 cm

b) y = 3.2 x 10⁻³ m = 0.32 cm

Explanation:

The formula of Young's Double Slit experiment will be used here:

y = \frac{\lambda L}{d}\\\\

where,

y = distance between dark spots = ?

λ = wavelength

L = distance of screen = 2 m

d = slit width = 4 x 10⁻⁴ m

a) FOR λ = 480 nm = 4.8 x 10⁻⁷ m:

y = \frac{(4.8\ x\ 10^{-7}\ m)(2\ m)}{4\ x\ 10^{-4}\ m}

<u>y = 2.4 x 10⁻³ m = 0.24 cm</u>

<u></u>

a) FOR λ = 640 nm = 6.4 x 10⁻⁷ m:

y = \frac{(6.4\ x\ 10^{-7}\ m)(2\ m)}{4\ x\ 10^{-4}\ m}

<u>y = 3.2 x 10⁻³ m = 0.32 cm</u>

7 0
2 years ago
As a marble rolls across the floor, it gradually slows to a stop due to friction. Which statement best describes the change in m
Olegator [25]

Answer:

I belive it would be "C"

Explanation:

If it was any of the other answers "B" it would instantly stop. "A" it would roll forever.

3 0
2 years ago
Each plate of an air-filled parallel-plate capacitor has an area of 45.0 cm2, and the separation of the plates is 0.080 mm. A ba
maw [93]

Answer:

Option (e)

Explanation:

A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,

Energy density = 100 J/m

Let Q be the charge on the plates.

Energy density = 1/2 x ε0 x E^2

100 = 0.5 x 8.854 x 10^-12 x E^2

E = 4.75 x 10^6 V/m

V = E x d

V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V

C = ε0 A / d

C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F

Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C

Q =  190 nC

3 0
3 years ago
A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai
patriot [66]

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

5 0
2 years ago
Which statement about the positive and negative value of speed compared to velocity is true?
mestny [16]
D is the answer
Velocity maybe negative or positive
while speed is always positive
3 0
3 years ago
Other questions:
  • Which material absorbs some colors of light and reflects other colors?
    14·2 answers
  • Light bulb is connected to a 110-V source. What is the resistance of this bulb if it is a 100-W bulb
    12·1 answer
  • How long will the cylinder last at the given flow rate is the pressure is 1000 psi?
    9·1 answer
  • What is the order of magnitude of the speed of light
    11·1 answer
  • What is necessary for fossil fuels to form? oxygen forming continuously for a long period of time sunlight shining continuously
    9·2 answers
  • Why is chemical energy a form of potential energy
    12·1 answer
  • _________________ Is how far an object has moved.
    7·1 answer
  • A 50 N girl climbs the flight of stairs in 3 seconds. How much work does she
    11·1 answer
  • PLS ANWSER FAST WILL GIVE BRAINL!!!!
    5·1 answer
  • A ball has a mass of 2 kg and is thrown with a force of 8 Newtons for .35 seconds. What is the ball's change in
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!