The distance between Mars and the Sun in the scale model would be 1140 m
Explanation:
In this scale model, we have:
represents an actual distance of

The actual distance between Mars and the Sun is 228 million km, therefore

On the scale model, this would corresponds to a distance of
.
Therefore, we can write the following proportion:

And solving for
, we find:

Learn more about distance:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
Answer:
Ground-state atom
Explanation:
When an atom is not excited, it is in its ground-state, which we refer as "standard" or "normal" state.
(Hopefully that helped you!)
GOOD LUCK
Astrophysicist Dr. D
Answer:
4 times the mass of Earth
Explanation:
= Mass of Earth
= Mass of the other planet
r = Radius of Earth
2r = Radius of the other planet
m = Mass of object
The force of gravity on an object on Earth is

The force of gravity on an object on the other planet is

As the forces are equal

So, the other planet would have 4 times the mass of Earth