Answer:
Only 9% weaker
Explanation:
Because this is where most stuff that people do in space takes place. So, um, here we're at a radius of the earth plus 300 kilometers. You may already be seeing why this isn't going to have much effect if this were except the 6.68 times, 10 to the sixth meters. And so the value of Gout here. You know, Newton's gravitational constant times, the mass of the Earth divided by R squared for the location we're looking at. And so this works out to be 8.924 meters per second squared, which is certainly less than it is at the surface of the earth. However, this is only 9% less than acceleration for gravity at the surface. So the decrease in the gravity gravitational acceleration of nine percent not really going toe produces a sensation of weightlessness.
Answer:
the second one
Explanation:
When a free positive charge q is accelerated by an electric field, such as shown in Figure 1, it is given kinetic energy. The process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.
The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy (because it depends only on position) than to calculate the work directly.
Answer:
Explanation:
Since the compass uses a magnetic field, if anything else magnetic is near it, the compass will start acting up. Making it unreliable so keep magnets away!