Answer:
the force between the building and the ball is non-conservative (friction-type force)
Explanation
Explanation:For this exercise the student must create an impulse to move the ball towards the building, in this part he performs positive work since the applied force and the displacement are in the same direction.
When the ball moves it has a kinetic energy and if its height increases or decreases its potential energy also changes, but the sum of being must be equal to the initial work.
When the ball arrives and collides with the building, non-conservative forces, of various kinds; rubbing, breaking, etc. It transforms this energy into a part of heat and another in mechanical energy that the building must absorb, let us destroy its wall
Consequently, the force between the building and the ball is non-conservative (friction-type force
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm
12 MPH
I DIDNT do the math my brother did hes in colledge so good lucks guys
Answer:
Graph for object that is not moving: B
Graph for object that is speeding up: D
Explanation:
A.) In order to represent that an object is not moving, you must either show that there is no velocity (0 m/s) or show a position over time graph that is a horizontal line.
Because the position is the same as time increases, the graph shows that there the object must be at rest, as there is no change in position due to velocity. (Velocity must be 0m/s)
B.) In order to represent an object is speeding up, the position time graph must either be a positive exponential function, the velocity time graph must be a positive, linear line, or the acceleration over time graph must be a positive, horizontal line.
Why is D the correct answer? Because if an object is speeding up, you know that the value of its speed (velocity) is increasing at some rate. And since speeding up refers to positive change, the function of velocity over time graph must be a positive function.