First I’ll show you this standard derivation using conservation of energy:
Pi=Kf,
mgh = 1/2 m v^2,
V = sqrt(2gh)
P is initial potential energy, K is final kinetic, m is mass of object, h is height from stopping point, v is final velocity.
In this case the height difference for the hill is 2-0.5=1.5 m. Thus the ball is moving at sqrt(2(10)(1.5))=
5.477 m/s.
There are a few reasons that one teams could win. It depends if the on of the teams has a better grip on the rope or not or maybe one off the teams has more friction between the ground and there shoes. So really it no matter what one of the teams will win.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂☘️
The potential energy of the object depends on
- the height of the object with respect to some reference points,
- the mass of the object,
- the gravitational field the object is in.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂☘️
Hope it helps ~
Answer:
i think it would be B, a large factory
Explanation: