1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
4 years ago
6

A red car with a mass of 3.0 kg traveling at 8 m/s collided with a blue car with a mass of 2.0 kg, which is at rest. The velocit

y of the blue car after the elastic collision is 9.6 m/s. What is the velocity of the red car?
Physics
1 answer:
anygoal [31]4 years ago
8 0

Answer:

460.8

Explanation:

just combine like terms

You might be interested in
A 2,000 kg car is parked at the top of a 30 m high hill. what is its potential energy?
Phoenix [80]
The PE for this question will be 588,000 because we take the mass (2,000 kg), multiply it by 9.8 which is Gravitational Acceleration and then multiply that by the height (30 meters)
6 0
3 years ago
Read 2 more answers
8.) If a car moving at 50km/h skids 15m with locked brakes, how far does the same car moving at 100km/h
pantera1 [17]

(8) A car starting with a speed <em>v</em> skids to a stop over a distance <em>d</em>, which means the brakes apply an acceleration <em>a</em> such that

0² - <em>v</em>² = 2 <em>a</em> <em>d</em> → <em>a</em> = - <em>v</em>² / (2<em>d</em>)

Then the car comes to rest over a distance of

<em>d</em> = - <em>v</em>² / (2<em>a</em>)

Doubling the starting speed gives

- (2<em>v</em>)² / (2<em>a</em>) = - 4<em>v</em>² / (2<em>a</em>) = 4<em>d</em>

so the distance traveled is quadrupled, and it would move a distance of 4 • 15 m = 60 m.

Alternatively, you can explicitly solve for the acceleration, then for the distance:

A car starting at 50 km/h ≈ 13.9 m/s skids to a stop in 15 m, so locked brakes apply an acceleration <em>a</em> such that

0² - (13.9 m/s)² = 2 <em>a</em> (15 m) → <em>a</em> ≈ -6.43 m/s²

So the same car starting at 100 km/h ≈ 27.8 m/s skids to stop over a distance <em>d</em> such that

0² - (27.8 m/s)² = 2 (-6.43 m/s²) <em>d</em> → <em>d</em> ≈ 60 m

(9) Pushing the lever down 1.2 m with a force of 50 N amounts to doing (1.2 m) (50 N) = 60 J of work. So the load on the other end receives 60 J of potential energy. If the acceleration due to gravity is taken to be approximately 10 m/s², then the load has a mass <em>m</em> such that

60 J = <em>m g h</em>

where <em>g</em> = 10 m/s² and <em>h</em> is the height it is lifted, 1.2 m. Solving for <em>m</em> gives

<em>m</em> = (60 J) / ((10 m/s²) (1.2 m)) = 5 kg

(10) Is this also multiple choice? I'm not completely sure, but something about the weight of the tractor seems excessive. It would help to see what the options might be.

4 0
3 years ago
Infant car seats are made to face the rear of the car. This is safer in a front end collision because of Newton's First law. New
kicyunya [14]
The answer is D hope it helps:)
5 0
3 years ago
Read 2 more answers
If a cars velocity is slowing down is it considered a positive or negative acceleration?
Natali [406]

Answer:

Negative

Explanation:

Observe that the object below moves in the positive direction with a changing velocity. An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).

4 0
3 years ago
Heat transfers energy from a hot object to a cold object. Both objects are isolated from their surroundings. The change in entro
aniked [119]

To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

S = \frac{Q}{T}

Here,

Q = Total Heat

T = Temperature

The total change of entropy from a cold object to a hot object is given by the relationship,

\Delta S = \frac{Q}{T_{cold}}-\frac{Q}{T_{hot}}

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'

Change in entropy \Delta S_{hot} is smaller than \Delta S_{cold}

Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object

5 0
3 years ago
Other questions:
  • A swimming pool, 10.0 m by 4.0 m, is filled with water to a depth of 3.0 m at a temperature of 20.2°c. if the energy needed to r
    14·2 answers
  • Coherent light with wavelength 540 nm passes through narrow slits with a separation of 0.370 mm . At a distance from the slits w
    5·1 answer
  • Which "spheres" are interacting when water evaporates from plants
    14·2 answers
  • Shah did not trust the results of an experiment that she had read about, so she is conducting the experiment herself. She goes t
    12·2 answers
  • A climber pulls herself 8 meters upwards with a force of 150 Newtons. If it takes her 16 seconds to cover the 8 meters, how much
    9·1 answer
  • How long will a plane have to fly continuously with 900 miles per hour in order to cover the same distance as that from Earth to
    14·1 answer
  • A 71-kg swimmer dives horizontally off a 500-kg raft. If the diver's speed immediately after leaving the raft is 6m/s, what is t
    11·1 answer
  • Can someone plz check if what I typed is good :)
    12·1 answer
  • Enumerate the function of each parts of alimentary canal in order from ingestion to egestion ​. ?
    6·1 answer
  • The very strong source of radio waves at the center of our galaxy is called.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!