Answer:
0.782 s
Explanation:
The water flows horizontally from the hose, so its initial vertical velocity is 0.
Given:
y₀ = 3 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 m = 3 m + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.782 s
Round as needed.
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer:
Cannot be determined from the given information
Explanation:
Given the following data;
Velocity = 24 m/s
Period = 3 seconds
To find the amplitude of the wave;
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.
However, the given parameters can be used to calculate the frequency and wavelength of the wave.
In order to find the force (F), you would have to use the formula for it:
F=ma
where m is mass and a is acceleration.
In the problem, the mass is 2.85kg and the acceleration is 4.9m/s^2.
Therefore,
F=2.85kg(4.9m/s^2)
F=13.965kg(m/s^2)
Since N=kg(m/s^2)
F=13.965N
And because the problem requires that we use only 2 significant figures,
F=13N
Therefore, the student must exert 13N of force.
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>