Answer:Based on the excerpt, which best describes Harburg’s view of the Great Depression?
He has no interest in financial success for himself.
He values artistic success over financial success for himself.
He believes most people benefited from losing their financial stability.
He regrets the fact that he gave away his money to benefit his art.
Explanation:
Answer:
A) 350 N
B) 58.33 N
C) 35 kg
D) 35 kg
Explanation:
If we use that g = 10 m/s^2, then the acceleration of gravity on the Moon will be 10/6 m/s^2 = 5/3 m/s*2
The weight of the object on Earth is given by:
Weight = mass * g = 35 * 10 = 350 N
The weight of the object on the Moon:
Weight = mass * gmoon = 35 * 5/3 = 58.33 N
The mass of the object on Earth is 35 kg
The mass of the object on the Moon is exactly the same as on the Earth (35 kg) since the mass is a quantity inherent to the object and not to its location.
The question is incomplete, the complete question is;
The compound magnesium phosphate has the chemical formula Mg3(PO4)2. In this compound, phosphorus and oxygen act together as one charged particle, which is connected to magnesium, the other charged particle. What does the 2 mean in the formula 5Mg3(PO4)2? A. There are two elements in magnesium phosphate. B. There are two molecules of magnesium phosphate. C. There are two magnesium ions in a molecule of magnesium phosphate. D. There are two phosphate ions in a molecule of magnesium phosphate.
Answer:
There are two phosphate ions in a molecule of magnesium phosphate.
Explanation:
The compound magnesium phosphate is an ionic compound. Ionic compounds always consists of two ions, a positive ion and a negative ion.
In this case, the positive ion is Mg^2+ while the negative ion is PO4^3-.
The subscript, 2 after the formula of the phosphate ion means that there are two phosphate ions in each formula unit of magnesium phosphate.
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s