I think shock waves require more speed they travel at the speed of sound
Answer:
Explanation:
Given
mass of skier=60 kg
distance traveled by skier=75 m
inclination
speed (v)=2.4 m/s
as the skier is moving up with a constant velocity therefore net force is zero

Force applied by cable

work done

(b)Power

You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4
Answer:
D. All of the above
PLZ MARK ME AS BRAINLEIST ;)
Answer:
According to the parallelogram law of vector addition if two vectors act along two adjacent sides of a parallelogram(having magnitude equal to the length of the sides) both pointing away from the common vertex, then the resultant is represented by the diagonal of the parallelogram passing through the same common vertex
Explanation: