1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
9

What is an example of the theory that the best adapted organisms for an environment are the ones most likely to survive

Physics
1 answer:
Llana [10]3 years ago
6 0
This is called the theory of evolution.

The theory of evolution is one of the most prominent theories in all of science as it is very far-reaching and all-encompassing. Furthermore, it talks exactly about that. A great example would be that we currently have only different types of organisms in the sea that can breathe under water - they are the best adapted type of organisms for that environment and can therefore prosper in it. 
You might be interested in
Muscles covert chemicals energy int
Elza [17]

Answer:

Mechanical energy

Explanation:

Mechanical energy is needed for movement of objects. Muscles convert chemical energy provided by the rest of the body to allow movement.

8 0
3 years ago
A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
zloy xaker [14]

Solution :

Given :

Mass attached to the spring = 4 kg

Mass dropped = 6 kg

Force constant = 100 N/m

Initial amplitude = 2 m

Therefore,

a). $v_{initial} = A w$

          $= 2 \times \sqrt{\frac{100}{4}}$

          = 10 m/s

Final velocity, v at equilibrium position, v = 5 m/s

Now, $\frac{1}{2}(4+4)5^2 = \frac{1}{2} kA'$

A' = amplitude = 1.4142 m

b). $T=2 \pi \sqrt{\frac{m}{k}}$

    m' = 2m

    Hence, $T'=\sqrt2 T$

c). $\frac{\frac{1}{2}(4+4)5^2 + \frac{1}{2}\times 4 \times 10^2}{\frac{1}{2} \times 4 \times 10^2}$

  $=\frac{1}{2}$

Therefore, factor $=\frac{1}{2}$

Thus, the energy will change half times as the result of the collision.

7 0
2 years ago
In a cyclic process, a gas performs 123 J of work on its surroundings per cycle. What amount of heat, if any, transfers into or
Margaret [11]

Answer:

123 J transfer into the gas

Explanation:

Here we know that 123 J work is done by the gas on its surrounding

So here gas is doing work against external forces

Now for cyclic process we know that

\Delta U = 0

so from 1st law of thermodynamics we have

dQ = W + \Delta U

dQ = W

so work done is same as the heat supplied to the system

So correct answer is

123 J transfer into the gas

8 0
3 years ago
Two objects are moving at equal speed along a level, frictionless surface. the second object has twice the mass of the first obj
lbvjy [14]

Answer:

They both rises to same height.

Explanation:

When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

mgH=\frac{1}{2}mv^{2}\\ v=\sqrt{2gH}

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.

Here the height is independent on the mass of an object and its only depend on velocity.

Now according to the question, two objects have same velocity but they have different masses.

Therefore, they rises to the same height because  height will not change with mass.

8 0
3 years ago
Read 2 more answers
A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
nalin [4]

Answer:

0·233 J

Explanation:

Given

Mass of the ball = 0·012 kg

Initially the ball is at a height of 2·5 m

As initially the ball is dropped, it's initial velocity will be equal to 0

Therefore initially it has zero kinetic energy and has only potential energy

∴ Initially total mechanical energy of the ball = potential energy of the ball

Initial potential energy of the ball = m × g × h

where

m is the mass of the ball

g is the acceleration due to gravity

h is the height of the ball

∴ Potential energy = 0·012 × 9·8 × 2·5 = 0·294 J

Velocity of the ball after striking the floor = 3·2 m/s

After striking the floor, the total mechanical energy = kinetic energy just after striking the floor

Kinetic energy = 0·5 × m × v²

where m is the mass of the ball

v is the velocity of the ball

∴ Kinetic energy of the ball = 0·5 × 0·012 × 3·2² = 0·061 J

Mechanical energy that is lost = 0·294 - 0·061 = 0·233 J

∴ Mechanical energy that the ball lost during its fall = 0·233 J

6 0
2 years ago
Other questions:
  • What is energy efficiency
    12·1 answer
  • The weight of an object is the product of its mass m, and acceleration of gravity , g . If an objects mass is m=10 . Kg what is
    12·1 answer
  • What objects can be seen from earth because they producde there own light? 
    14·1 answer
  • Experiment to determine the refractive index of a glass prism FOCAL LENGTH = 9.5cm i° e° d° 30 43 69 40 41 61 45 39 56 50 37 48
    14·1 answer
  • Consider the chemical equation CH4 + 2 O2 → CO2 + 2 H2O. In this equation, CH4 is a
    14·2 answers
  • What is the impulse of a 131g baseball when it strikes a batter at 57 m/s
    15·1 answer
  • A constant magnetic flux through a closed loop of wire induces an emf in that loop. True or false?
    13·1 answer
  • Please I need 14, 15, and 16
    12·1 answer
  • Can somebody help me understand this
    11·1 answer
  • A 1,160 kg satellite orbits earth with a tangential speed of 7,446 m/s. if the satellite experiences a centripetal force of 8,95
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!