No because your opinion and beliefs answers many questions
Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.
Answer:
T
Explanation:
= magnitude of current in each wire = 2.0 A
= length of the side of the square = 4 cm = 0.04 m
= length of the diagonal of the square =
a =
(0.04) = 0.057 m
= magnitude of magnetic field by wires at A and C


T
= magnitude of magnetic field by wire at B


T
Net magnitude of the magnetic field at D is given as



T
Answer:
The second is correct.
Explanation:
Try with a magnet and experiment. You'll find out
Answer:
They diverge on refraction
Explanation:
When parallel light rays strike a concave lens, they will diverge that is they spread out .
Concave lens is also known as diverging lens, which means that when parallel rays of light strike on it, the lens spreads out the light rays ( that is it diverges the rays of light) that are refracted through it.
At the middle of concave lens is thinner.
When light is passes through the lens they diverge it or spread out.
The concave lens causes light rays to bend away or diverge from its axis since the concave lens is a diverging lens.