Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m