Answer:
Look for extra things to do, small details, until you find a big enough one to go off that to continue
Explanation:
n/a
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
B. Who, what, when, where, why, and how. Those are the most important and key componants in a story.
Answer:
0.88 g
Explanation:
Using ideal gas equation to calculate the moles of chlorine gas produced as:-

where,
P = pressure of the gas = 805 Torr
V = Volume of the gas = 235 mL = 0.235 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of chlorine gas = ?
Putting values in above equation, we get:

According to the reaction:-

1 mole of chlorine gas is produced when 1 mole of manganese dioxide undergoes reaction.
So,
0.01017 mole of chlorine gas is produced when 0.01017 mole of manganese dioxide undergoes reaction.
Moles of
= 0.01017 moles
Molar mass of
= 86.93685 g/mol
So,

Applying values, we get that:-

<u>0.88 g of
should be added to excess HCl (aq) to obtain 235 mL of
at 25 degrees C and 805 Torr.</u>
Beryllium is a metal so it needs to loose electrons to have a full outer shell while sulfur is a non-metal so it needs to gain electrons to fill its outer shell.