Well, TECHNICALLY, the periodic table is "based" upon a whole myriad of characteristics. But if you're talking about the consecutive arrangement of elements...it would be B, the atomic number.
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.
Answer:
See the answer below
Explanation:
<em>The correct answer would be that the solute particles lower the solvent's vapor pressure, thus requiring a higher temperature to cause boiling.</em>
Dissolving a solute particle in a solvent leads to a decrease in the vapor pressure of the solvent above the resulting solution when compared to the pure solvent. The lower the vapor pressure of a liquid, the higher the temperature required for the liquid to boil and vice versa. Hence, a higher temperature would be needed to boil a solvent with dissolved solutes.
The correct option is this: THE CONCENTRATION OF THE PRODUCTS AND THE REACTANTS DO NOT CHANGE.
A reversible chemical reaction is said to be in equilibrium if the rate of forward reaction is equal to the rate of backward reaction. At this stage, the concentrations of the products and the reactants remain constant, that is, there is no net change in the concentration even though the reacting species are moving between the forward and the backward reaction.