Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.
LIKE DISSOLVES LIKE. Since Ccl4 is non-polar, it'll be soluble in any non-polar solvent. Hope this helps you!
Molar mass O2 = 31.99 g/mol
Molar mass CO2 = 44.01 g/mol
Moles ratio:
<span>C3H8 + 5 O2 = 3 CO2 + 4 H2O
</span>
5 x 44.01 g O2 ---------------- 3 x 44.01 g CO2
( mass of O2) ------------------ 37.15 g CO2
mass of O2 = 37.15 x 5 x 44.01/ 3 x 44.01
mass of O2 = 8174.8575 / 132.03
mass of O2 = 61.916 g
Therefore:
1 mole O2 ----------------- 31.99 g
moles O2 -------------------- 61.916
moles O2 = 61.916 x 1 / 31.99
moles = 61.916 / 31.99 => 1.935 moles of O2
Answer:
44.9g
Explanation:
You have to convert grams of CH4 to moles, use the mole-to-mole ratio of CH4 to water, and convert back to grams.
(20.0g CH4)(1 mol CH4/16.04g)(2 mol H2O/1 mol CH4)(18.01 g H2O/ 1 mol) = 44.9127 g
Hope this helps!
Answer: 1.8 x 10^1 or the scientific e notation is: 1.8e1