If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

Where | A | is the magnitude of the vector and
is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle
.
Vector A is in the 4th quadrant
So:

So:

So:

= -47.28 ° +360° = 313 °
= 313 °
Option 4.
Question:
The operations manager for a well-drilling company must recommend whether to build a new facility, expand his existing one, or do nothing. He estimates that long-run profits (in $000) will vary with the amount of precipitation (rainfall) as follows:
Alternative Precipitation
Low Normal High
Do nothing -100 100 300
Expand 350 500 200
Build new 750 300 0
If he feels the chances of low, normal, and high precipitation are 30 percent, 20 percent, and 50 percent respectively, What is EVPI (Expected value of Perfect Information)?
A. $140,000
B. $170,000
C. $285,000
D. $305,000
E. $475,000
Answer:
D. $170,000
Explanation:
The expected long run profits are for
Low Normal High
Do nothing -100*0.3 100*0.2 300*0.5 = 140
Expand 350*0.3 500*0.2 200*0.5 = 305
Build new 750*0.3 300*0.2 0*0.5 = 285
Therefore the expected long run profits are
$140,000
$305,000
$285,000
Based on his selected option being either to build new or to expand, the most profitable option is to expand
=$305,000
EVPI = EPPI-EMV =$170,000
Answer:
Explanation:
Given
mass of archer 
Average force 
extension in arrow 
Work done to stretch the bow with arrow


This work done is converted into kinetic Energy of arrow

where v= velocity of arrow



(b)if arrow is thrown vertically upward then this energy is converted to Potential energy




Answer:
he would have to run at a 7 and a half mile to get 8 miles in an hour
Explanation:
Since the stone was dropped from height, its initial velocity = 0 m/s
Using v² = u² + 2gs.
Where g ≈ 10 m/s², u = initial velocity = 0 m/s, s = height from drop = 2.5 m
v² = u² + 2gs
v² = 0² + 2*10*2.5
v² = 0 + 50
v² = 50
v = √50
v ≈ 7.07 m/s
Hence velocity just before hitting the ground is ≈ 7.07 m/s