1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
3 years ago
7

How do you know the speed of an electromagnetic wave in a vacuum?

Physics
1 answer:
ycow [4]3 years ago
5 0
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
You might be interested in
What is the example of current electricity?
Nikitich [7]
Flow of electrons through a copper wire
8 0
3 years ago
North America experienced all of the following during the last glacial period EXCEPT alpine glaciers covered the Rocky and Casca
Juli2301 [7.4K]

Answer:

the Hudson Bay was covered with alpine glaciers

Explanation:

During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.

5 0
3 years ago
PLEASE HELP! It’s urgent... and please show your work!!
bagirrra123 [75]

Answer:

A) 3.8 x 10

Explanation:

4 0
3 years ago
The angle between the two force of magnitude 20N and 15N is 60 degrees (20N force being horizontal) determine the resultant in m
BARSIC [14]

A) The resultant force is 30.4 N at 25.3^{\circ}

B) The resultant force is 18.7 N at 43.9^{\circ}

Explanation:

A)

In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.

The two forces are:

F_1 = 20 N at 0^{\circ} above x-axis

F_2 = 15 N at 60^{\circ} above y-axis

Resolving each force:

F_{1x}=F_1 cos \theta = (20)(cos 0)=20 N\\F_{1y}=F_1 sin \theta =(20)(sin 0)=0 N

F_{2x}=F_2 cos \theta = (15)(cos 60)=7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 60)=13.0 N

So, the components of the resultant are:

F_x = F_{1x}+F_{2x}=20+7.5 = 27.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude of the resultant is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{27.5^2+13.0^2}=30.4 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{27.5})=25.3^{\circ}

B)

In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

\theta=180^{\circ}-60^{\circ}=120^{\circ}

So we have:

F_{2x}=F_2 cos \theta = (15)(cos 120)=-7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 120)=13.0 N

So, the components of the resultant this time are:

F_x = F_{1x}+F_{2x}=20-7.5 = 12.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{13.5^2+13.0^2}=18.7 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{13.5})=43.9^{\circ}

Learn more about vector addition:

brainly.com/question/4945130

brainly.com/question/5892298

#LearnwithBrainly

7 0
3 years ago
Cheetahs can accelerate to a speed of 19.6 m/s in 2.45 s and can continue to accelerate to reach a top speed of 27.6 m/s . Assum
marta [7]

Answer:

  • v_{top} = 61.96 \frac{mi}{h}

Explanation:

To express the cheetah's top speed in miles per hour, we just need to find the conversion factor.

We know that the top speed is

v_{top} = 27.7 \frac{m}{s}

So, we want to obtain miles from meters and hours from seconds.

<h3>miles from meters</h3>

First we write the equivalence:

1609.34 \ m = 1 \ mi

Now, we can divide by 1609.34 meters on both sides:

\frac{1609.34 \ m}{ 1609.34 \ m} = \frac{1 \ mi}{ 1609.34 \ m}

The left sides equals 1, so

1 = \frac{1 \ mi}{ 1609.34 \ m}

And this is our conversion factor from meters to miles. Now, we can multiply our top speed by this conversion factor, as the conversion factor equals one, and is dimensionless, the physical meaning will be the same.

v_{top} = 27.7 \frac{m}{s} * \frac{1 \ mi}{ 1609.34 \ m}

v_{top} = 27.7 \frac{m}{s} * \frac{1 \ mi}{ 1609.34 \ m}

v_{top} = 0.0172120 \frac{mi}{s}

This is the top speed in miles per second, now, for obtaining miles per hour:

<h3>hours from seconds</h3>

We can do pretty much the same, first, the equivalence:

1 \ h = 3600 \ s

as the seconds are dividing in the velocity, we know divide by 1 hour.

\frac{1 \ h}{ 1 \ h} = \frac{3600 \ s}{ 1 \ h}

1 = \frac{3600 \ s}{ 1 \ h}

and know we just multiply our top speed by this conversion factor

v_{top} = 0.0172120 \frac{mi}{s}  \frac{3600 \ s}{ 1 \ h}

v_{top} = 61.96 \frac{mi}{h}

8 0
3 years ago
Other questions:
  • A car starts from rest and travels 25 m in 5 seconds at constant velocity. It then reverses 5 m in 10 seconds at constant veloci
    10·1 answer
  • If you quadruple the temperature of a black body, by what factor will the total energy radiated per second per square meter incr
    8·1 answer
  • what is the acceleration of a 20kg bike if its being pedaled in a northerly direction with constant unbalanced force of 10 nwhat
    14·1 answer
  • What is the total resistance for the circuit? (must include unit - ohms)
    10·1 answer
  • (a) At a distance of 0.200 cm from the center of a charged conducting sphere with radius 0.100 cm, the electric field is 480 N&g
    9·1 answer
  • The intensity of a 70-dB whistle is quintupled. What is the new decibel level
    10·1 answer
  • An electron in the Thomson model of hydrogen
    14·1 answer
  • the gravitational force between the sun and earth is larger than sun and the moon. what do you think the reason for this is?
    11·2 answers
  • A 12kg cheetah accelerates 24 m/s". What is the force the cheetah needed to run?
    7·1 answer
  • How do you think weather can increase the demand for electricity?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!