The balanced chemical reaction is:
<span>2C4H10(g)+13O2(g)->10H2O(g)+8CO2(g)
</span>
<span>Calculate the mass of water produced when 1.77 grams of butane reacts with excessive oxygen?
</span>1.77 g C4H10 (1 mol C4H10/58.14 g C4H10) (10 mol H2O / 2 mol C4H10) ( 1.01 g H2O / 1 mol H2O ) = <span>0.15 g H2O
</span><span>Calculate the mass of butane needed to produce 71.6 of carbon dioxide.
</span>71.6 g CO2 (1 mol CO2/ 44.01 g CO2) ( 2 mol C4H10 / 8 mol CO2 ) (58.14 g C4H10 / 1 mol C4H10 ) = 23.65 g C4H10
Answer:
the acceleration is 3 k/h/s
Explanation:
The formula for acceleration is Δv/t, so change in velocity divided by time.
The original velocity is 15 kph, and the final velocity is 30 kph. Therefore, the change in velocity is 15 kph. 15/5=3 k/h/s
Answer:
B. It tells whether products or reactants are favored at equilibrium.