This question may require more information to provide a more accurate answer.
A fault block mountain range is formed by tension as rocks are pulled away from each other. A fault block is a section of rock bounded on at least two sides by faults.
Faults commonly break the crust into large, fault bounded blocks. If normal faults down drop one fault block relative to other blocks on either side, the resulting feature is called a Graben.
A block that is uplifted relative to blocks in either side is called a horst.
The answer for this question is neon
<span>P waves
P-waves are sometimes called pressure waves, and sometimes they are called longitudinal waves. P-waves are transmitted through the Earth’s interior with a backwards and forwards motion along the line of travel, by alternating compression and dilatation. A jack hammer creates P-waves. They are capable of passing through any type of material they encounter, including the liquid of the Earth’s outer core, although they
will be bent and deflected when they pass across the boundaries separating
layers of different densities.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
D 9.8 m/s^2
Explanation:
The force of gravitational gravity on earth is 9.8 m/s^2