Answer:
4.75 m/s
Explanation:
The computation of the velocity of the existing water is shown below:
Data provided in the question
Tall = 2 m
Inside diameter tank = 2m
Hole opened = 10 cm
Bottom of the tank = 0.75 m
Based on the above information, first we have to determine the height which is
= 2 - 0.75 - 0.10
= 2 - 0.85
= 1.15 m
We assume the following things
1. Compressible flow
2. Stream line followed
Now applied the Bernoulli equation to section 1 and 2
So we get

where,
P_1 = P_2 = hydrostatic
z_1 = 0
z_2 = h
Now

= 4.7476 m/sec
= 4.75 m/s
The correct answer is definitely C.
There are less than 16 valence electrons in 2 chlorine atoms, but they form a stable bond because a covalent bond should involve <span>a pair of electrons between atoms in a molecule. I thing it's pretty clear. Regards!</span>
The answer would be 27,000 Joules because (1/2) m v^2 =30*900 which equals 27,000 J
Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Hi there!
We can use Newton's Second Law:

ΣF = Net force (N)
m = mass (kg)
a = acceleration (m/s²)
We can rearrange the equation to solve for the acceleration.
