Potential energy is measured using formula Ep=mgh
m=mass (kg)
g= acceleration due to gravity (which is 9.8 on earth)
h= height in metres above ground
For this question
m=0.1
g=9.8
h=1
So Ep=0.1(9.8)(1)
Ep=0.98 Joules
When it is dropped all of this potential energy is converted into kinetic energy which can be measured using formula
Ek=1/2m(v^2) (v=final velocity)
Since all potential energy in this q is converted to kinetic we know Ek=0.98Joules and our mass is the same (0.1kg)
So when we sub everything in we get
0.98=1/2(0.1)(v^2)
0.98=0.05(v^2)||divide both side by 0.05
19.6=v^2 ||square root both sides
v=4.4 m/s
You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
Potential energy is energy stored due to its position. Thermal energy is energy released as heat
Good Morning, how are you?
Your answer is C. The moon orbits and rotates the same, so we NEVER see the far side of the moon from earth :)
Have a great day :)