1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
12

What fraction is greater? 2/3 or 3/5

Mathematics
2 answers:
Ivan3 years ago
8 0
2/3 is bigger! hope this helped ;))
ratelena [41]3 years ago
6 0
The answer would be 1/2
You might be interested in
Which expressions are equivalent to -6n+(-12)+4n
Elza [17]

Answer:

-2n - 12

Step-by-step explanation:

Combine like terms. Note that each term has one variable (n). Also note  that one negative sign and one positive sign results in a negative sign.

-6n + (-12) + 4n = -6n  + 4n - 12 = -2n - 12

-2n - 12 is your answer

~

5 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
What are the steps to find <br> 40% of 200
denis-greek [22]
You just have to think what is 40% of 100 which is 40 then multiply 40 2 times to find out the answer four 40% of 200 when you do 40x2 it =80 so the answer is 80
8 0
3 years ago
Read 2 more answers
We have 50 video gamers who share information about their favorite games. 20 people say that Borderlands II is their favorite ga
stealth61 [152]

Answer:

2 people

Step-by-step explanation:

Total number of people (n) = 50

Borderlands II (B) = 20

Fortnite (F) = 33

Minecraft (M) = 19

Borderlands and Fortnite (B&F) = 15

Borderlands and Minecraft (B&M)= 10

All games (B&M&F) = 5

The number of people that claimed more than one game as their favorite (X) is given by:

X=M+B+F-n\\X=19+20+33-50\\X=22\ people

Those people can be divided in B&F only, B&M only, M&F only and B&M&F:

X=(B\&M-B\&M\&F)+(B\&F-B\&M\&F)+(M\&F-B\&M\&F)+B\&M\&F\\X=B\&M+B\&F+M\&F-2*B\&M\&F\\22=10+15+M\&F-2*5\\M\&F=7\ people

7 people claimed that Minecraft and Fortnite were their favorites however, 5 of those people claimed all of the games as their favorite. Therefore, only 2 people declared Minecraft and Fortnite (exclusively) as their favorites.

7 0
3 years ago
Read 2 more answers
which table is a linear function A. input 2,5,9,11 output 7,16,28,34 B. input1,2,3,7 out put 1,4,16,49 C. input 2,4,5,16 output
PolarNik [594]

Answer:

bro im on the same question u on we might as well guess u know

Step-by-step explanation: no

8 0
2 years ago
Other questions:
  • When you receive a loan to make a purchase, you often must make a down payment in cash. The amount of the loan is the purchase c
    5·1 answer
  • in 1930 the average cost for a gallon of gasoline was $0.25. in 2007 the average cost for a gallon of gasoline is $2.60 what is
    15·2 answers
  • The x intercepts of the graph of f(x)= x(x+1)(x-5)(x-7) are {0 or 1}, {-1 or 1}, {5 or -5} &amp; {7 or -7}?
    14·1 answer
  • What is 16 divided by[2 6]?
    8·1 answer
  • What is 51-38=8 and 44-38=8?
    10·1 answer
  • A shoe company sends out 7 trucks loaded with nursing shoes that cost the company $ 1,572per truck if they send out 750 boxes pe
    12·1 answer
  • The graph below depicts the volume of ice cubes versus temperature in degrees Celsius. Which of the following statements are fal
    11·2 answers
  • The roots of x2 -( ) +34 are 5 -/+3i
    12·1 answer
  • What are the solutions ?<br><img src="https://tex.z-dn.net/?f=7x%20%5E%7B2%7D%20%20%2B%2010x%20-%203%20%3D%20x%20%5E%7B2%7D%20%2
    5·1 answer
  • You will write a 5-paragraph essay explaining how you would solve the following equation:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!