False. When a chemical reaction occurs, atoms don't create or destroy. They are rearranged as bonds and are broken and formed together.
<span> Beryllium has an exclusive </span>+2<span> oxidation state in all of its compounds</span>
To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Answer:
<em>Part A</em><em>:</em>
a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.
<em>Part B</em><em>:</em>
b) If the spacing between the slits is decreased the fringe spacing Δy will increase.
<em>Part C</em><em>:</em>
a) If the distance to the screen is decreased the fringe spacing will decrease.
<em>Part D</em><em>:</em>
The dot in the center of fringe E is
farther from the left slit than from the right slit.
Explanation:
In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.
The position of bright fringes in the screen where the pattern is formed can be calculated with


- m is the order number.
is the wavelength of the monochromatic light.- L is the distance between the screen and the two slits.
- d is the distance between the slits.
- Part A: a) In the above equation for the position of bright fringes we can see that if the wavelength of the light
is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.
- Part B: b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.
- Part C: a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.
- Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at the center of the fringe E in the screen we use the condition for constructive interference. That says that the path length difference Δr between rays coming from the left and right slit must be
We simply replace the values in that equation :


The dot in the center of fringe E is
farther from the left slit than from the right slit.