Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Answer:
True the plastic will float because of the principle of flotation or buoyancy
Explanation:
Buoyancy explains it all!!
Buoyancy is the upward force/upthrust experienced by a body immersed totally or partially in a liquid.
According to the principle of flotation:
<em>"when a body is totally or partially immersed in liquid it experiences an upthrust which is equal to the volume of fluid displaced"</em>
The plastic will float due to the fact the average density of the total volume of the plastic and the air inside it is less than the same volume of water it is floating in
Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Let say the two train cars are of masses
and 
now if the speed of two cars are
and 
then we can say that the momentum of two cars before they collide is given by

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.
Now since in these two car motion there is no external force on them while they collide
So the momentum of two cars are always conserved.
hence we can say that the final momentum of two cars will be same after collision as it is before collision

Explanation:
Pascal's principle, also called Pascal's law, in fluid (gas or liquid) mechanics, statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container.