Answer:
Inference
Explanation:
An inference involves the application of logic to progress from a premise to a conclusion or logical consequence on the basis of the evidence or known fact. Inference is a process of thought that be divided into a deduction and an induction aspect.
In the given question Halley, by standing outside was able to deduce the sound of thunder she is then able by inductive reasoning from the fact that storms are usually preceded by and accompany lightening, conclude that there is a storm coming.
The ground exerts an equal force on the golf ball
The complete sentence is:
In a third class lever, the distance from the effort to the fulcrum is SMALLER the distance from the load/resistance to the fulcrum.
In fact, in a third class lever, the fulcrum is on one side of the effort and the load/resistance is on the other side, so the effort is located somewhere between the two of them. This means that the distance effort-fulcrum is smaller than the distance load-fulcrum.
Answer: A (
,309.8°)
B (2
, 315°)
C (
, 26.56°)
Explanation: To transform rectangular coordinates into polar coordinates use:
and 
For point A:




°
Point A is in the II quadrant, so we substract the angle for 360° since it is in degrees:

309.8°
Polar coordinates for point A is (
, 309.8°)
For point B:





°
Point B is in IV quadrant, so:

315°
Polar coordinates for point B is (
, 315°)
For point C:





26.56°
Polar coordinates for point C is (
, 26.56°)
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.