Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
As we know that time period of simple pendulum is given as
T = 2π √L/g
here we know that
T = 3.8 s
now from above equation we know that
T² = 4π² (L/g)
now on rearranging the above equation we will have
L = gT² / 4π²
now plug in all data into it
L = (9.8) (3.8)² / (4) (3.14)²
so the length of the cable must be 3.6 m
Answer:
when a force is applied by one object to a second object, an equal and opposite force is applied back on the first object
Explanation:
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
Communication circuit <em>(D)</em> is becoming more common in residential electrical design and construction.
LAN Ethernet cables, outlets, and even hubs and bridges, are being built into the walls of new homes, along with the usual electrical outlet wiring, to give the owner the networking infrastructure and internet access that everybody needs now ... without stringing a mess of cables on the floor and through doors all over the house.