Answer:
intensity of the light that emerges from the three filters is 560.80 W/m²
Explanation:
Given data
intensity I = 1375 W/m2
angle 1 = 31.0°
angle 2 = 41.0°
to find out
intensity of the light that emerges from the three filters
solution
we know intensity of light pass 1st polarize = I/2 = 1375 / 2 = 687.5 W/m2
so intensity after 2nd polarize pass = I 1st cos²(θ)
I 2nd = 687.5 cos²(31) = 687.5 ( 0.836754) = 575.27 W/m2
and
intensity after 3rd polarize pass = I 2nd cos²(θ)
I 3rd = 575.27 cos²(41) = 575.27 (0.974839) = 560.80 W/m2
so that intensity of the light that emerges from the three filters is 560.80 W/m²
<u>Answer:</u>
The acceleration of the plane and the time required to reach this speed is (a)= 7.5
and time(t) = 20 seconds
<u>Explanation:
</u>
Given data Initial velocity
= 0
Final velocity (
) = 150 m/second
Distance (d) = 1500 m
We have the formula, 
which gives
= 0+2a(1500)
22500 = 3000 a
acceleration (a) = 7.5 

150 = 7.5 t
t= 150/7.5 = 20
t = 20 seconds.
Answer:
Net force required to accelerate the car is 6000 N
Explanation:
Force is calculated by the equation, F = Mass × Acceleration
This is based on Newton's Second Law of Motion which states that the force acting on an object is its mass times the acceleration of the object.
Here, mass = 3000 kg and acceleration = 2 m/s²
⇒ Force = Mass × Acceleration
= 3000 × 2 = 6000 N
⇒ F = 6000 N
⇒ M = 3000 kg
⇒ a = 2 m/s²
Answer:
The answer is <u><em> C </em></u>
Explanation:
I looked it up