Answer:
46.40 g.
Explanation:
- It is a stichiometric problem.
- The balanced equation of the reaction: 4K + O₂ → 2K₂O.
- It is clear that 4.0 moles of K reacts with 1.0 mole of oxygen produces 2.0 moles of K₂O.
- We should convert the mass of K (38.5 g) into moles using the relation:
<em>n = mass / molar mass,</em>
n = (38.5 g) / (39.098 g/mol) = 0.985 mole.
<em>Using cross multiplication:</em>
4.0 moles of K produces → 2.0 moles of K₂O, from the stichiometry.
0.985 mole of K produces → ??? moles of K₂O.
∴ The number of moles of K₂O produced = (0.985 mole) (2.0 mole) / (4.0 mole) = 0.4925 mole ≅ 0.5 mole.
- Now, we can get the mass of K₂O:
∴ mass = n x molar mass = (0.5 mole) (94.2 g/mol) = 46.40 g.
The first one is D, the second one is A and the last is C and D
1,516.31168 grams of Magnesium Hydroxide
Answer:
There are 1.4754246675000002e+24 atoms of Hydrogen within the measurement of 2.45 moles of hydrogen!
Explanation:
Answer:
A) increasing dispersion interactions
Explanation:
Polarizability allows gases containing atoms or nonpolar molecules (for example, to condense. In these gases, the most important kind of interaction produces <em>dispersion forces</em>, <em>attractive forces that arise as a result of temporary dipoles induced in atoms or molecules.</em>
<em>Dispersion forces</em>, which are also called <em>London forces</em>, usually <u>increase with molar mass because molecules with larger molar mass tend to have more electrons</u>, and <u>dispersion forces increase in strength with the number of electrons</u>. Furthermore, larger molar mass often means a bigger atom whose electron distribution is more easily disturbed because the outer electrons are less tightly held by the nuclei.
Because the noble gases are all nonpolar molecules, <u>the only attractive intermolecular forces present are the dispersion forces</u>.