Answer:

Explanation:
To find the weight (W) of the pond contents first we need to use the following equation:
(1)
Where m the mass and g is the gravity
Also, we have that the mass is:
(2)
Where ρ is the density and V the volume
We cand calculate the volume as follows:
(3)
Where L is the length, w is the wide and d is the depth
By entering equation (2) and (3) into (1) we have:

Therefore, the weight of the pond is 6.65x10⁶ lbf.
I hope it helps you!
Answer:
mass of HNO₃ = 0.378 g
Explanation:
Normality = Molarity * number of equivalents
Molarity = Normality/number of equivalents
normality of HNO₃ = 0.30 N, Volume = 20 mL
HNO₃ ionizes in the following way:
HNO₃(aq) ----> H⁺ + NO₃⁻
Therefore, number of equivalents for HNO₃ is 1
molarity of HNO₃ = 0.30/1 =0.30 mol/dm³
Using the formula, molarity = number of moles/volume in liters
number of moles = molarity * volume
Number of moles of HNO₃ = 0.30 mol/dm³ * 20ml * 1 dm³ /1000 mL
number of moles = 0.006 moles
From the formula, mass = number of moles * molar mass
molar mass of HNO₃ = 63.0 g/mol
mass = 0.006 * 63
mass of HNO₃ = 0.378 g
Just look it up on google kodvjkngkrefsnjkvjfrnefsjkj
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
The pH of the sodium hydroxide (NaOH) solution at the given concentration of 0.000519 M is determined as 10.72.
<h3>What is pH of solution?</h3>
The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration [H+] of the given solution.
Concentration of the basic solution, [OH⁻] = 0.000519
pOH = -log[OH⁻]
pOH = -log[0.000519]
pOH = 3.28
<h3>pH of the solution</h3>
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 3.28
pH = 10.72
Thus, the pH of the sodium hydroxide (NaOH) solution at the given concentration of 0.000519 M is determined as 10.72.
Learn more about pH here: brainly.com/question/26424076