Answer:

Explanation:
According to the free body diagram, in this case, we have:

Recall that the force of friction is given by:

Replacing and solving for the coefficient of kinetic friction:

We have an uniformly accelerated motion. Thus, the acceleration is defined as:

Finally, we calculate
:

Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)
The answer on Edge would be (A.)= Larger and Cooler ! I'm doing the same thing as y'all. Good luck everyone.
The components of the net force on the cart is determined as 67.66 N.
<h3>
Component of net force on the cart</h3>
The component of net force on the cart is determined by resolving the forces into x and y -components.
T1 = 30 N
T2 = 40 N
T1x = -30cos(0) = 30 N
T1y = 30sin(0) = 0
T2x = 40 x cos(30) = 34.64 N
T2y = 40 x sin(3) = 20 N
∑X = 30 N + 34.64 N = 64.64 N
∑Y = 0 + 20 N = 20 N
<h3>Resultant force</h3>
R = √(64.64² + 20²)
R = 67.66 N
Learn more about net force here: brainly.com/question/25239010
#SPJ1
B.waves of light carry energy directly to your skin.